A criterion of *p*-nilpotency of finite groups with some weakly *s*-semipermutable subgroups

Xinjian Zhang*

School of Mathematical Sciences Huaiyin Normal University Huaian, Jiangsu, 223300 China hytczxj@163.com

Yong Xu

School of Mathematics and Statistics Henan University of Science and Technology Luoyang, Henan, 471003 China xuy_2011@163.com

Abstract. Let H be a subgroup of a group G. H is called a weakly *s*-semipermutable subgroup of G if there are a subnormal subgroup T of G and an *s*-semipermutable subgroup H_{ssG} in G contained in H such that G = HT and $H \cap T \leq H_{ssG}$. In this paper, we got a criterion of *p*-nilpotency of G by some weakly *s*-semipermutable subgroups.

Keywords: finite group, *p*-nilpotent group, weakly *s*-semipermutable subgroup.

1. Introduction

Throughout this paper, all groups are finite. Let G be a group and H a subgroup of G. Recall that H is said to be *s*-permutable (or *s*-quasinormal, π -quasinormal) of G if H permutes with every Sylow subgroup of G; H is called weakly *s*permutable in G if there is a subnormal subgroup T of G such that G = HTand $H \cap T \leq H_{sG}$, where H_{sG} is the maximal *s*-permutable subgroup of Gcontained in H; H is said to be *s*-semipermutable in G if H permutes with every Sylow *p*-subgroup G_p of G with (|H|, p) = 1. More recently, the authors introduced in [4] the following concept.

Definition 1.1. Let H be a subgroup of a group G. H is called a weakly ssemipermutable subgroup of G if there are a subnormal subgroup T of G and an s-semipermutable subgroup H_{ssG} in G contained in H such that G = HT and $H \cap T \leq H_{ssG}$.

Li et al. in [4] get the following result:

^{*.} Corresponding author

Theorem I. Let G be a group and let P be a Sylow p-subgroup of G, where p is the smallest prime dividing |G|. Suppose that P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P of order |D| and every cyclic subgroup of P of order 4 (if P is non-abelian 2-subgroup and |D| = 2) is weakly s-semipermutable in G. Then G is p-nilpotent.

A celebrated theorem of Frobenius [9, Satz. IV.5.8] asserts that G is pnilpotent if either $N_G(H)$ is p-nilpotent or $N_G(H)/C_G(H)$ is a p-subgroup for every non-identity p-subgroup H of G. In this paper we replace some of the conditions of Frobenius' theorem and Theorem I, namely, H is restricted to be a p-subgroup of a fixed order, the condition that p is the smallest prime of |G| is changed by either $N_G(H)$ is p-nilpotent or $N_G(H)/C_G(H)$ is a p-group and we assume that H is a weakly s-semipermutable subgroup of G. Our main result is the following theorems, which can be considered as a complement to Frobenius' theorem and Theorem I with weakly s-semipermutable subgroups.

Main result

Let p be an odd prime dividing the order of a group G and P a Sylow p-subgroup of G. If there is a subgroup D of P with 1 < |D| < |P| such that every subgroup H of P with order |D| is weakly s-semipermutable in G and either $N_G(H)$ is p-nilpotent or $N_G(H)/C_G(H)$ is a p-group, then G is p-nilpotent.

Remark 1.2. Let H be a p-subgroup of a group G. If $N_G(H)$ is p-nilpotent, then obviously $N_G(H)/C_G(H)$ is a p-group. But the converse is not true in general. For example, let $G = A_4 \times C_2$. Evidently $N_G(C_2)/C_G(C_2)$ is a 2-group, but $G = N_G(C_2)$ is not 2-nilpotent.

All unexplained notations and terminologies are standard. The reader is referred to [9] if necessary.

2. Preliminaries

In this section, we list some lemmas which will be useful for the proofs of our results.

Lemma 2.1 ([4, Lemma 2.1]). (a) An s-permutable subgroup of G is subnormal in G.

(b) If $H \leq K \leq G$ and H is s-permutable in G, then H is s-permutable in K.

(c) Let $K \trianglelefteq G$. If H is s-permutable in G, then HK/K is s-permutable in G/K.

(d) If P is an s-permutable p-subgroup of G for some prime p, then $N_G(P) \ge O^p(G)$.

Lemma 2.2 ([4, Lemma 2.2]). Let G be a group. Suppose that H is an s-semipermutable subgroup of G. Then

(1) If $H \leq K \leq G$, then H is s-semipermutable in K.

(2) Let N be a normal subgroup of G. If H is a p-group for some prime $p \in \pi(G)$, then HN/N is s-semipermutable in G/N.

(3) If $H \leq O_p(G)$, then H is s-permutable in G.

(4) Suppose that H is a p-subgroup of G for some prime $p \in \pi(G)$ and N is normal in G. Then $H \cap N$ is also an s-semipermutable subgroup of G.

Lemma 2.3 ([4, Lemma 2.3]). Let G be a group and U a weakly s-semipermutable subgroup of G and N a normal subgroup of G. Then:

(1) If $U \leq H \leq G$, then U is weakly s-semipermutable in H.

(2) Suppose that U is a p-group for some prime p. If $N \leq U$, then U/N is weakly s-semipermutable in G/N.

(3) Suppose that U is a p-group for some prime p. and N is a p'-subgroup. Then UN/N is weakly s-semipermutable in G/N.

(4) If U is a p-group for some prime p and N a normal subgroup of G contained in $O^p(G)$, then $U \cap N$ is an s-semipermutable subgroup of G.

Lemma 2.4 ([9, III, 5.2 and IV, 5.4]). Suppose p is a prime and G is not a p-nilpotent group but whose proper subgroups are all p-nilpotent. Then:

(a) G has a normal Sylow p-subgroup P for some prime p and G = PQ, where Q is a non-normal cyclic q-subgroup for some prime $q \neq p$;

(b) $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$;

(c) The exponent of P is p or 4.

Lemma 2.5. Let G be a group and P a p-subgroup of G, where p is a prime divisor of |G|. Suppose that $N_G(P)/C_G(P)$ is a p-group. Let N be a normal subgroup of G. If either N is a p'-group or $N \leq P$, then $N_{G/N}(PN/N)/C_{G/N}(PN/N)$ is also a p-group.

Proof Let $N_{G/N}(PN/N) = K/N$. Then $PN \leq K$. By the hypothesis, P is a Sylow *p*-subgroup of NP. Thus by the Frattini argument $K = N_K(P)PN = N_G(P)N \leq K$, that is, $N_{G/N}(PN/N) = N_G(P)N/N$. It follows from $N_G(P)/C_G(P)$ is a *p*-group that

$$N_G(P)N/N/C_G(P)N/N \simeq N_G(P)N/C_G(P)N \simeq N_G(P)/C_G(P)(N_G(P) \cap N)$$

is a *p*-group. Evidently $C_G(P)N/N \leq C_{G/N}(PN/N)$.

Hence $N_{G/N}(PN/N)/C_{G/N}(PN/N)$ is a p-group as desired.

Lemma 2.6. Let G be a group and H a p-subgroup of G, where p is a prime divisor of |G|. Let M be a subgroup of G containing H. If $N_G(H)/C_G(H)$ is a p-group, then $N_M(H)/C_M(H)$ is also a p-group.

Proof Since $N_M(H)/C_M(H) = N_G(H) \cap M/C_G(H) \cap M \cong (N_G(H) \cap M)C_G(H)/C_G(H) \le N_G(H)/C_G(H)$, the result is obvious.

3. Proof of main result

Let H be a p-subgroup of G. By Remark 1.2., we only need to prove that if there is a subgroup D of P with 1 < |D| < |P| such that every subgroup Hof P with order |D| is weakly s-semipermutable in G and $N_G(H)/C_G(H)$ is a p-group, then G is p-nilpotent. Assume it is false and G is a counterexample with minimal order. Now we derive a contradiction from the following several steps.

Step 1. $O_{p'}(G) = 1.$

Suppose that $O_{p'}(G) \neq 1$. Consider $G/O_{p'}(G)$. Then by Lemmas 2.3(3) and 2.5, we have $G/O_{p'}(G)$ satisfies the hypothesis of the theorem. The choice of G yields that $G/O_{p'}(G)$ is p-nilpotent, which implies that G is p-nilpotent, a contradiction.

Step 2. Let T be a subgroup of G such that $P \leq T < G$, then T is p-nilpotent. Let H be a subgroup of T of order |D|. By hypothesis and Lemma 2.6, we have that $N_T(H)/C_T(H)$ is a p-group and by Lemma 2.3(1) H is weakly s-semipermutable in T. Hence T satisfies the hypothesis of the theorem. The minimality of G forces that T is p-nilpotent.

Step 3. If |P : D| > p, then every subgroup H of P of order |D| is s-semipermutable in G and $O^p(G) = G$.

Assume that P has a subgroup H such that |H| = |D| and H is not ssemipermutable in G. By hypothesis, there exists a subnormal subgroup K of G such that G = HK and $H \cap K < H$. It follows that K < G. Let M be a normal maximal subgroup of G containing K. Then |G:M| = p. By Lemmas 2.3(1) and 2.6, the hypothesis is still true for M since |P:D| > p. The minimal choice of G implies that M is p-nilpotent and so G is p-nilpotent, a contradiction. Hence every subgroup H of P of order |D| is s-semipermutable in G. Similarly, we have that $O^p(G) = G$.

Step 4. |D| > p.

Suppose that |D| = p. Since G is not p-nilpotent, G has, by [9, IV, 5.4], a p-closed Schmidt subgroup $K = [K_p]K_q$, where $K_p \leq P$. By hypothesis and Lemma 2.4, the exponent of K_p is p. Now every subgroup H of K of order p is weakly s-semipermutable in K by Lemma 2.3 and $N_K(H)/C_K(H)$ is a p-group by Lemma 2.6. Let x be an element in K_p of order p. Then $\langle x \rangle$ is weakly s-semipermutable in K. Let T be a subnormal subgroup of K and $\langle x \rangle_{ssK}$ an s-semipermutable subgroup of K contained in $\langle x \rangle$ such that $K = \langle x \rangle T$ and $\langle x \rangle \cap T \leq \langle x \rangle_{ssK}$. Since $O^p(K) = K$, T = K and so $\langle x \rangle = \langle x \rangle_{ssK}$ is s-semipermutable in K. By Lemmas 2.2(3) and 2.1(d) $\langle x \rangle$ is normal in K. It follows that $N_K(\langle x \rangle)/C_K(\langle x \rangle) = K/C_K(\langle x \rangle)$ is a p-group. Hence $\langle x \rangle \in Z(K)$, which implies that every element of K of order p were in Z(K), then K would be p-nilpotent by [9, Satz IV.5.5], a contradiction. Hence |D| > p.

Step 5. $O_p(G) \neq 1$.

Since G is not p-nilpotent, by the Glauberman-Thompson Theorem, $N_G(Z(J(P)))$ is not p-nilpotent, where J(P) is the Thompson subgroup of P. Then $P \leq N_G(Z(J(P)))$. By Step 2, we have $N_G(Z(J(P))) = G$ and so $O_p(G) \neq 1$.

Step 6. Let N be a minimal normal subgroup of G contained in $O_p(G)$. Then |N| < |D|.

If |N| = |D|, then by hypothesis, $G/C_G(N) = N_G(N)/C_G(N)$ is a *p*-group. So $O^p(G) \leq C_G(N)$. If N is a Sylow *p*-subgroup of $C_G(N)$, then by Schur-Zassenhaus Theorem, N has a complement K in $C_G(N)$ and so $C_G(N) = N \times K$. It follows that K is normal in G, which contradicts Step 1. Hence N is not a Sylow *p*-subgroup of $C_G(N)$. It is easy to see that $C_G(N)$ satisfies the hypothesis. If $C_G(N) < G$, by induction $C_G(N)$ is *p*-nilpotent and then G is *p*-nilpotent, a contradiction. Hence $C_G(N) = G$, that is, $N \leq Z(G)$ and so |N| = |D| = p, which contradicts step 4.

Now suppose that |N| > |D|. Let Q be a Sylow q-subgroup of G, where $q \neq p$ is a prime divisor of |G|. Consider $C_G(N)$ and NQ. Obviously $N \leq C_G(N)$, $N \leq NQ$ and $P \cap C_G(N)$ is a Sylow p-subgroup of $C_G(N)$. It is easy to see that NQ and $C_G(N)$ satisfy the hypothesis of the theorem. If $C_G(N) = G$, then |N| = p and so |D| = 1, contradicts the hypothesis. Hence $C_G(N) < G$ and then $C_G(N)$ is p-nilpotent by the choice of G. Hence Step 1 forces that $C_G(N) = N$. Now consider NQ. If NQ < G, then by induction NQ is p-nilpotent and so $Q \leq C_G(N) = N$, a contradiction. Hence NQ = G. It follows that N = Pis a minimal normal subgroup of G. Let H be a subgroup of N with order |D|, T a subnormal subgroup of G and H_{ssG} an s-semipermutable subgroup of G contained in H such that G = HT and $H \cap T \leq H_{ssG}$. If T < G, then G = NT and $N \cap T = 1$ for the minimality of N. Therefore N = H, contradicts |N| > |D|. Hence $H = H_{ssG}$ is s-semipermutable in G. By Lemma 2.2(3), H is s-permutable in G and $O^p(G) \leq N_G(H)$ follows from Lemma 2.1(d). Noticing that $H \leq N$, H is normal in G, contradicts the minimality of N and the hypothesis 1 < |D|. Hence |N| < |D|.

Step 7. G has a maximal subgroup M such that G = MN, $M \cap N = 1$. Furthermore, $C_G(N) = N = O_p(G)$ is the unique minimal normal subgroup of G.

By Step 6 and Lemma 2.3, it is easy to see that G/N satisfies the hypothesis of the theorem, so the choice of G yields that G/N is p-nilpotent. The uniqueness of N and $N \leq \Phi(G)$ are obvious. So G has a maximal subgroup M such that $G = MN, M \cap N = 1$ and $M \cong G/N$ is p-nilpotent. Since $O_p(G) \cap M$ is normalized by N and M, the uniqueness of N yields $O_p(G) \cap M = 1$ and so $N = O_p(G)$. Noticing that G is p-solvable, $C_G(N) \leq N$ follows from Step 1 and [7, Theorem 9.3.1]. On the other hand, N is abelian, so $C_G(N) = N$.

Step 8.|N| = p.

By Step 7, $P = N(P \cap M)$. If |P : D| > p, pick a maximal subgroup N_1 of N and pick a subgroup S_1 of $M \cap P$ such that $H = N_1S_1$ is of order |H| = |D|.

Then by Step 3 every subgroup H of P of order |D| is s-semipermutable in G. So $N_1 = N \cap H$ is s-semipermutable in G by Lemma 2.2(4). Furthermore, N_1 is s-permutable in G by Lemma 2.2(3), Therefore, N_1 is normal in G by Lemma 2.1(4) and Step 3. Then $N_1 = 1$ by the minimality of N and so |N| = p.

Now assume that |P:D| = p. Since $P \cap M < P$, there exists a maximal subgroup P_1 of P such that $P \cap M \leq P_1$. Hence $P_1 \cap N$ is *s*-semipermutable in Gby the unique minimality of N and Lemma 2.3(4), then $P_1 \cap N$ is *s*-permutable in G by Lemma 2.2(3). Hence $P_1 \cap N$ is normal in G follows from Lemma 2.1 and the fact that $P_1 \cap N$ is normal in P. The minimality of N implies that $P_1 \cap N = 1$. Hence N has order p.

Step 9. The final contradiction.

By Step 8, Aut(N) is a cyclic group of order p-1. For $G/N \cong N_G(N)/C_G(N) \lesssim Aut(N)$, we have that $P \leq C_G(N) = N$, contradicts Step 6 and the hypothesis. The final contradiction completes the proof.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11501235, 11601225, 11171243) and Natural Science Foundation of Jiangsu Province(No. BK20140451).

References

- A. N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra, 315 (2007), 192-209.
- [2] Xinjian Zhang, Xianhua Li, A criterion of p-nilpotentcy of finite groups, Comm. Algebra, 40 (2012), 3652-3657.
- [3] O. H. Kegel, Sylow-Gruppen and Subnoramiteller endlicher Gruppen, Math. Z., 78 (1962), 205-221.
- [4] Yangming Li, Shouhong Qiao, Ning Su, Yanming Wang, On weakly ssemipermutable subgroups of finite groups, Journal of Algebra, 371 (2012), 250-261.
- [5] Huaquan Wei, Yanming Wang, On c^{*}- normality and its properties, J. Group Theory, 10 (2007), 211-223.
- [6] Yangming Li, Yanming Wang, Huaquan Wei, The influence of πquasinormal of some subgroups of a finite group, Arch. Math., 81 (2003), 245-252.
- [7] D. J. S. Robinson, A course in the theory of groups, Springer, New York, Berlin, 1993.

- [8] D. Gorenstein, *Finite groups*, New York-Evanston-London, 1968.
- [9] B. Huppert, Endliche gruppen I, Springer, New York, Berlin, 1967.

Accepted: 16.03.2017