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Abstract. Let H be a subgroup of a group G. H is called a weakly s-semipermu-
table subgroup of G if there are a subnormal subgroup T of G and an s-semipermu-
table subgroup HssG in G contained in H such that G = HT and H ∩ T ≤ HssG. In
this paper, we got a criterion of p-nilpotency of G by some weakly s-semipermutable
subgroups.
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1. Introduction

Throughout this paper, all groups are finite. Let G be a group andH a subgroup
ofG. Recall thatH is said to be s-permutable (or s-quasinormal, π-quasinormal)
of G if H permutes with every Sylow subgroup of G; H is called weakly s-
permutable in G if there is a subnormal subgroup T of G such that G = HT
and H ∩ T ≤ HsG, where HsG is the maximal s-permutable subgroup of G
contained in H; H is said to be s-semipermutable in G if H permutes with
every Sylow p-subgroup Gp of G with (|H|, p) = 1. More recently, the authors
introduced in [4] the following concept.

Definition 1.1. Let H be a subgroup of a group G. H is called a weakly s-
semipermutable subgroup of G if there are a subnormal subgroup T of G and an
s-semipermutable subgroup HssG in G contained in H such that G = HT and
H ∩ T ≤ HssG.

Li et al. in [4] get the following result:
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Theorem I. Let G be a group and let P be a Sylow p-subgroup of G, where
p is the smallest prime dividing |G|. Suppose that P has a subgroup D such
that 1 < |D| < |P | and every subgroup H of P of order |D| and every cyclic
subgroup of P of order 4 (if P is non-abelian 2-subgroup and |D| = 2 ) is weakly
s-semipermutable in G. Then G is p-nilpotent.

A celebrated theorem of Frobenius [9, Satz. IV.5.8] asserts that G is p-
nilpotent if either NG(H) is p-nilpotent or NG(H)/CG(H) is a p-subgroup for
every non-identity p-subgroup H of G. In this paper we replace some of the
conditions of Frobenius’ theorem and Theorem I, namely, H is restricted to be
a p-subgroup of a fixed order, the condition that p is the smallest prime of |G| is
changed by either NG(H) is p-nilpotent or NG(H)/CG(H) is a p-group and we
assume that H is a weakly s-semipermutable subgroup of G. Our main result is
the following theorems, which can be considered as a complement to Frobenius’
theorem and Theorem I with weakly s-semipermutable subgroups.

Main result

Let p be an odd prime dividing the order of a group G and P a Sylow p-subgroup
of G. If there is a subgroup D of P with 1 < |D| < |P | such that every subgroup
H of P with order |D| is weakly s-semipermutable in G and either NG(H) is
p-nilpotent or NG(H)/CG(H) is a p-group, then G is p-nilpotent.

Remark 1.2. Let H be a p-subgroup of a group G. If NG(H) is p-nilpotent,
then obviously NG(H)/CG(H) is a p-group. But the converse is not true in
general. For example, let G = A4×C2. Evidently NG(C2)/CG(C2) is a 2-group,
but G = NG(C2) is not 2-nilpotent.

All unexplained notations and terminologies are standard. The reader is
referred to [9] if necessary.

2. Preliminaries

In this section, we list some lemmas which will be useful for the proofs of our
results.

Lemma 2.1 ([4, Lemma 2.1]). (a) An s-permutable subgroup of G is subnormal
in G.

(b) If H ≤ K ≤ G and H is s-permutable in G, then H is s-permutable in
K.

(c) Let K E G. If H is s-permutable in G, then HK/K is s-permutable in
G/K.

(d) If P is an s-permutable p-subgroup of G for some prime p, then NG(P ) ≥
Op(G).

Lemma 2.2 ([4, Lemma 2.2]). Let G be a group. Suppose that H is an s-
semipermutable subgroup of G. Then

(1) If H ≤ K ≤ G, then H is s-semipermutable in K.
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(2) Let N be a normal subgroup of G. If H is a p-group for some prime
p ∈ π(G), then HN/N is s-semipermutable in G/N .

(3) If H ≤ Op(G), then H is s-permutable in G.

(4) Suppose that H is a p-subgroup of G for some prime p ∈ π(G) and N is
normal in G. Then H ∩N is also an s-semipermutable subgroup of G.

Lemma 2.3 ([4, Lemma 2.3]). Let G be a group and U a weakly s-semipermutable
subgroup of G and N a normal subgroup of G. Then:

(1) If U ≤ H ≤ G, then U is weakly s-semipermutable in H.

(2) Suppose that U is a p-group for some prime p. If N ≤ U , then U/N is
weakly s-semipermutable in G/N .

(3) Suppose that U is a p-group for some prime p. and N is a p′-subgroup.
Then UN/N is weakly s-semipermutable in G/N .

(4) If U is a p-group for some prime p and N a normal subgroup of G
contained in Op(G), then U ∩N is an s-semipermutable subgroup of G.

Lemma 2.4 ([9, III, 5.2 and IV, 5.4]). Suppose p is a prime and G is not a
p-nilpotent group but whose proper subgroups are all p-nilpotent. Then:

(a) G has a normal Sylow p-subgroup P for some prime p and G = PQ,
where Q is a non-normal cyclic q-subgroup for some prime q ̸= p;

(b) P/Φ(P ) is a minimal normal subgroup of G/Φ(P );

(c) The exponent of P is p or 4.

Lemma 2.5. Let G be a group and P a p-subgroup of G, where p is a prime
divisor of |G|. Suppose that NG(P )/CG(P ) is a p-group. Let N be a normal sub-
group of G. If either N is a p′-group or N ≤ P , then NG/N (PN/N)/CG/N (PN/N)
is also a p-group.

Proof Let NG/N (PN/N) = K/N . Then PN E K. By the hypothe-
sis, P is a Sylow p-subgroup of NP . Thus by the Frattini argument K =
NK(P )PN = NG(P )N ≤ K, that is, NG/N (PN/N) = NG(P )N/N. It follows
from NG(P )/CG(P ) is a p-group that

NG(P )N/N/CG(P )N/N ≃ NG(P )N/CG(P )N ≃ NG(P )/CG(P )(NG(P ) ∩N)

is a p-group. Evidently CG(P )N/N ≤ CG/N (PN/N).

Hence NG/N (PN/N)/CG/N (PN/N) is a p-group as desired.

Lemma 2.6. Let G be a group and H a p-subgroup of G, where p is a prime
divisor of |G|. Let M be a subgroup of G containing H. If NG(H)/CG(H) is a
p-group, then NM (H)/CM (H) is also a p-group.

Proof Since NM (H)/CM (H) = NG(H) ∩ M/CG(H) ∩ M ∼= (NG(H) ∩
M)CG(H)/CG(H) ≤ NG(H)/CG(H), the result is obvious.
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3. Proof of main result

Let H be a p-subgroup of G. By Remark 1.2., we only need to prove that if
there is a subgroup D of P with 1 < |D| < |P | such that every subgroup H
of P with order |D| is weakly s-semipermutable in G and NG(H)/CG(H) is a
p-group, then G is p-nilpotent. Assume it is false and G is a counterexample
with minimal order. Now we derive a contradiction from the following several
steps.

Step 1. Op′(G) = 1.

Suppose that Op′(G) ̸= 1. Consider G/Op′(G). Then by Lemmas 2.3(3) and
2.5, we have G/Op′(G) satisfies the hypothesis of the theorem. The choice of
G yields that G/Op′(G) is p-nilpotent, which implies that G is p-nilpotent, a
contradiction.

Step 2. Let T be a subgroup of G such that P ≤ T < G, then T is p-nilpotent.

Let H be a subgroup of T of order |D|. By hypothesis and Lemma 2.6,
we have that NT (H)/CT (H) is a p-group and by Lemma 2.3(1) H is weakly
s-semipermutable in T . Hence T satisfies the hypothesis of the theorem. The
minimality of G forces that T is p-nilpotent.

Step 3. If |P : D| > p, then every subgroup H of P of order |D| is s-
semipermutable in G and Op(G) = G.

Assume that P has a subgroup H such that |H| = |D| and H is not s-
semipermutable in G. By hypothesis, there exists a subnormal subgroup K of
G such that G = HK and H ∩ K < H. It follows that K < G. Let M be a
normal maximal subgroup of G containing K. Then |G : M | = p. By Lemmas
2.3(1) and 2.6, the hypothesis is still true for M since |P : D| > p. The minimal
choice of G implies thatM is p-nilpotent and so G is p-nilpotent, a contradiction.
Hence every subgroup H of P of order |D| is s-semipermutable in G. Similarly,
we have that Op(G) = G.

Step 4. |D| > p.

Suppose that |D| = p. Since G is not p-nilpotent, G has, by [9, IV, 5.4],
a p-closed Schmidt subgroup K = [Kp]Kq, where Kp ≤ P . By hypothesis and
Lemma 2.4, the exponent of Kp is p. Now every subgroup H of K of order p is
weakly s-semipermutable in K by Lemma 2.3 and NK(H)/CK(H) is a p-group
by Lemma 2.6. Let x be an element in Kp of order p. Then ⟨x⟩ is weakly
s-semipermutable in K. Let T be a subnormal subgroup of K and ⟨x⟩ssK an
s-semipermutable subgroup of K contained in ⟨x⟩ such that K = ⟨x⟩T and
⟨x⟩ ∩ T ≤ ⟨x⟩ssK . Since Op(K) = K, T = K and so ⟨x⟩ = ⟨x⟩ssK is s-semiper-
mutable in K. By Lemmas 2.2(3) and 2.1(d) ⟨x⟩ is normal in K. It follows that
NK(⟨x⟩)/CK(⟨x⟩) = K/CK(⟨x⟩) is a p-group. Hence ⟨x⟩ ∈ Z(K), which implies
that every element of K of order p were in Z(K), then K would be p-nilpotent
by [9, Satz IV.5.5], a contradiction. Hence |D| > p.

Step 5. Op(G) ̸= 1.
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Since G is not p-nilpotent, by the Glauberman-Thompson Theorem,
NG(Z(J(P ))) is not p-nilpotent, where J(P ) is the Thompson subgroup of P .
Then P ≤ NG(Z(J(P ))). By Step 2, we haveNG(Z(J(P ))) = G and soOp(G) ̸=
1.

Step 6. Let N be a minimal normal subgroup of G contained in Op(G). Then
|N | < |D|.

If |N | = |D|, then by hypothesis, G/CG(N) = NG(N)/CG(N) is a p-group.
So Op(G) ≤ CG(N). If N is a Sylow p-subgroup of CG(N), then by Schur-
Zassenhaus Theorem, N has a complement K in CG(N) and so CG(N) = N ×
K. It follows that K is normal in G, which contradicts Step 1. Hence N is
not a Sylow p-subgroup of CG(N). It is easy to see that CG(N) satisfies the
hypothesis. If CG(N) < G, by induction CG(N) is p-nilpotent and then G is
p-nilpotent, a contradiction. Hence CG(N) = G, that is, N ≤ Z(G) and so
|N | = |D| = p, which contradicts step 4.

Now suppose that |N | > |D|. Let Q be a Sylow q-subgroup of G, where q ̸= p
is a prime divisor of |G|. Consider CG(N) and NQ. Obviously N ≤ CG(N),
N ≤ NQ and P ∩ CG(N) is a Sylow p-subgroup of CG(N). It is easy to see
that NQ and CG(N) satisfy the hypothesis of the theorem. If CG(N) = G, then
|N | = p and so |D| = 1, contradicts the hypothesis. Hence CG(N) < G and then
CG(N) is p-nilpotent by the choice of G. Hence Step 1 forces that CG(N) = N .
Now consider NQ. If NQ < G, then by induction NQ is p-nilpotent and so
Q ≤ CG(N) = N , a contradiction. Hence NQ = G. It follows that N = P
is a minimal normal subgroup of G. Let H be a subgroup of N with order
|D|, T a subnormal subgroup of G and HssG an s-semipermutable subgroup
of G contained in H such that G = HT and H ∩ T ≤ HssG. If T < G,
then G = NT and N ∩ T = 1 for the minimality of N . Therefore N = H,
contradicts |N | > |D|. Hence H = HssG is s-semipermutable in G. By Lemma
2.2(3), H is s-permutable in G and Op(G) ≤ NG(H) follows from Lemma 2.1(d).
Noticing that H E N , H is normal in G, contradicts the minimality of N and
the hypothesis 1 < |D|. Hence |N | < |D|.

Step 7. G has a maximal subgroup M such that G = MN , M ∩ N = 1.
Furthermore, CG(N) = N = Op(G) is the unique minimal normal subgroup of
G.

By Step 6 and Lemma 2.3, it is easy to see that G/N satisfies the hypothesis
of the theorem, so the choice ofG yields thatG/N is p-nilpotent. The uniqueness
of N and N ≤ Φ(G) are obvious. So G has a maximal subgroup M such that
G = MN , M ∩ N = 1 and M ∼= G/N is p-nilpotent. Since Op(G) ∩ M is
normalized by N and M , the uniqueness of N yields Op(G) ∩ M = 1 and so
N = Op(G). Noticing that G is p-solvable, CG(N) ≤ N follows from Step 1 and
[7, Theorem 9.3.1]. On the other hand, N is abelian, so CG(N) = N .

Step 8.|N | = p.
By Step 7, P = N(P ∩M). If |P : D| > p, pick a maximal subgroup N1 of

N and pick a subgroup S1 of M ∩P such that H = N1S1 is of order |H| = |D|.



228 XINJIAN ZHANG and YONG XU

Then by Step 3 every subgroup H of P of order |D| is s-semipermutable in G.
So N1 = N ∩H is s-semipermutable in G by Lemma 2.2(4). Furthermore, N1 is
s-permutable in G by Lemma 2.2(3), Therefore, N1 is normal in G by Lemma
2.1(4) and Step 3. Then N1 = 1 by the minimality of N and so |N | = p.

Now assume that |P : D| = p. Since P ∩ M < P , there exists a maximal
subgroup P1 of P such that P ∩M ≤ P1. Hence P1∩N is s-semipermutable in G
by the unique minimality of N and Lemma 2.3(4), then P1 ∩N is s-permutable
in G by Lemma 2.2(3). Hence P1 ∩N is normal in G follows from Lemma 2.1
and the fact that P1 ∩ N is normal in P . The minimality of N implies that
P1 ∩N = 1. Hence N has order p.

Step 9. The final contradiction.

By Step 8, Aut(N) is a cyclic group of order p−1. ForG/N ∼= NG(N)/CG(N)
. Aut(N), we have that P ≤ CG(N) = N , contradicts Step 6 and the hypoth-
esis. The final contradiction completes the proof.
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